
Week 1 - Wednesday

 What did we talk about last time?
 Course overview
 Policies
 Schedule
 C basics

 You're already a better C programmer than you think you are!
 For selection, C supports:
 if statements
 switch statements

 For repetition, C supports:
 for loops
 while loops
 do-while loops

 Try to implement code the way you would in Java and see what
happens …

 One big difference from Java is that C uses integer values for
conditions
 0 (zero) is false
 Anything non-zero is true

if (6)
{

// Yep!
}

if (0)
{

// Nope!
}

if (3 < 4)
{

// Yep!
}

 Java is a strongly-typed language
 Types really mean something

 C is much looser

double a = 3.4;
int b = 27;
a = b; // Legal in Java and C
b = a; // Illegal in Java,

// might give a warning in C

 The C standard makes floating-point precision compiler dependent
 Even so, it will usually work just like in Java
 Just a reminder about the odd floating-point problems you can have:

 Just like in Java, you almost always want to use double to store floating-
point values, since it has more precision than float

#include <stdio.h>

int main()
{

float a = 4.0 / 3.0;
float b = a - 1;
float c = b + b + b;
float d = c - 1;
printf("%e\n", d);
return 0;

}

 You might not have thought too closely about this when using
IntelliJ

 When you compile Java from the command line, it looks like
the following:

 Doing so creates .class files
 You run a .class file by invoking the JVM

> javac Hello.java

> java Hello

class A
{
Problem p;
p.solve();
}

101110101

101011010

110010011
JVM

010101010

010100101

001110010

Java
Source
Code

Machine
Code Hardware

Java
Bytecode

 When you invoke the JVM, you specify which class you want to start with
 If many classes in the same directory have a main()method, it doesn't matter
 It starts the main() for the class you pick

 Java is smart
 If you try to compile A.java, which depends on B.java and C.java, it will

find those files and compile them too

javac.java java.class ExecutesJVM

 When you invoke gcc
 It takes a .c file, preprocesses it to resolve #include and
#define directives
 The updated .c file is compiled into a .o object file
 If needed, the linker links together multiple .o files into a single

executable

Pre-
processor.c file Compiler.c file Linker.o file Executea.out

 The C compiler is bare bones
 It doesn't include any other files that you might need
 You have to include and compile files in the right order
 What happens if file thing1.c wants to use functions from
thing2.c and thing2.c also wants to use functions from
thing1.c?
 Which do you compile first?
 Header files for each will eventually be the answer

 To compile a file called hello.c into an executable called
hello

 To run hello, type ./hello

> gcc hello.c -o hello

> ./hello

 The order of compilation matters
 You have to compile all necessary files yourself to make your

program work
 To make these issues easier to deal with, the make utility is

used
 This utility uses makefiles
 Each makefile has a list of targets
 Each target is followed by a colon and a list of dependencies
 After the list of dependencies, on a new line, preceded by a tab, is

the command needed to create the target from the dependencies

 Makefiles are called makefile or Makefile

all: hello

hello: hello.c
gcc -o hello hello.c

clean:
rm -f *.o hello

 In Java, all code and data is in a class
 The class can optionally be in a package
 The name of the class must match the name of the file it's in

 In C, every file is a list of functions and global variables
 That's it
 No classes, no requirements for naming anything any particular way
 To use other files, you use the #include directive which literally

copies and pastes those files into the code being compiled

 You get operators for:
 Basic math
 Bitwise operations
 Pointer manipulation

 There are no built-in operators or language features for
composite data
 No way to deal with strings, arrays, lists, sets, etc.
 Instead of having language features for these things, C has a

standard library that helps with some of these tasks

 It's a small language
 You can expect to use all of it regularly

 I/O is painful and library driven
 Like Java, unlike Pascal

 There's no garbage collection
 In Java, create as many objects as you want with the new keyword and

they will magically disappear when you no longer need them
 In C, you can allocate chunks of memory using the malloc() function,

but then you have to destroy them yourself using free()
 Remember: Java was designed, C was implemented

 Automotive mechanic vs. automotive engineer
 Coding Java is like being a mechanic (though perhaps a fantastic one)
 You're building applications out of nice building blocks
 Coding C allows you to become an engineer
 The JVM itself was written in C and C++

 Many parts of OSes, performance critical systems, virtual
machines, and most embedded code is still written in C

 It's close to what's actually happening in the machine
 Fast and predictable

 It's sort of like Latin
 Informs English, French, Italian, Spanish, etc.
 The language of classical literature, church history, scientific

nomenclature

You can argue about which language is best; C does not care,
because it still rules the world.

Dennis Brylow

 You couldn't declare a variable in the header of a for loop in C89
 The following line of code used to cause a compiler error:

 The version of gcc in this lab uses the C99 standard by default,
which allows it

 For fully compliant C89 compilers, you actually have to declare all
of your variables at the top of a block

 These older versions shouldn't be an issue, but you never know
when you might have to use an older compiler for an older system

for(int i = 0; i < 100; ++i)
{

printf("%d ", i);
}

 Most programming languages have multiple versions
 C is no exception

 The original, unstandardized version of the language used at Bell Labs from
1969 onward is sometimes called K&R C
 It's similar to what we use now but allowed weird function definition syntax and didn't

have function prototypes
 Most of what we talk about is ANSI C89 which is virtually identical to ISO C90
 We'll use a few features from C99
 Declaring variables anywhere (including in for-loop headers)
 Single-line comments (originally, only /* comment */ was allowed)
 stdbool.h
 I encourage you not to use variable-length arrays, since they mostly cause trouble

 There's even a C11 (2011) standard, but it doesn't add anything we care about

 It was originally called Unics (UNiplexed Information and
Computing Service)
 A pun on another OS, Multics (MULTiplexed Information and

Computer Services)
 After it starting supporting multiple simultaneous users, it was

renamed Unix
 So, it doesn't stand for anything anymore (sort of like CERN)

 It's a standard for operating systems based on a long, complex
history with many companies and innovators

 The Open Group has the trademark on the term "UNIX," and
you're only allowed to call your OS Unix if it meets their Single
UNIX Specification

 Linux and FreeBSD and other free implementations of Unix do
not meet this specification

 Ken Thompson started working on Unix in 1969 at
Bell Laboratories, a division of AT&T

 It was written in assembly language for the PDP-7
and PDP-11 minicomputers
 Made by Digital Equipment Corporation (DEC), a

giant of that era that was bought by Compaq (which
was bought by HP)

 Meanwhile, Dennis Ritchie developed the C
programming language

 It was mature enough in 1973 that most of Unix
could be implemented in it

 This connection has established C as the pre-
eminent systems programming language

 Unix was originally only used within AT&T
 Because AT&T has a monopoly on telephone service, they

weren't allowed to sell software
 They started giving Unix to universities for a distribution fee
 While spending a year at Berkeley, Thompson worked on BSD

(Berkeley Software Distribution), a version of Unix that was
widely used in academia

 AT&T's monopoly broke up, allowing them to sell Unix,
eventually leading to the famous System V Unix in 1983

 System V was used as the basis of Unix systems on lots of
different kinds of hardware
 Sun: SunOS and Solaris
 DEC: Ultrix and OSF/1 (which became HP Tru64 UNIX)
 IBM: AIX
 HP: HP-UX,
 Apple: NeXTStep, A/UX
 Intel: XENIX

 Richard Stallman (RMS) is the father of open source
software

 He started in the GNU (GNU's Not Unix) project in
1984
 This created the GPL (GNU Public License)

 The focus is on the ability to run, copy, and improve
software

 Lots of useful programming tools that have been
incorporated into Linux came out of GNU:
 emacs
 gcc
 bash
 The glibc

 Linus Torvalds started working in 1991 to make a
Unix kernel to run on an Intel 386

 He put Linus's Unix (Linux) under the GNU GPL
 The BSD distributions also gave rise to free BSD

implementations (notably FreeBSD), but their
usage is much less widespread than Linux

 Linux kernel version numbers are x.y.z where x is a
major version, y is a minor version, and z is a minor
revision
 Current stable release is 6.12.9

 Linux is just the kernel, the part of the OS that manages resources and schedules
processes

 To put Linux on your computer, you need a distribution
 A distribution includes a whole OS:

 The kernel (of course)
 Windowing system

 GNOME
 KDE

 Package management
 dpkg
 APT
 pacman
 rpm
 YUM

 Tools and utilities
 Hardware drivers

 Distributions can be big or small
and are often customized for a
particular purpose
 Desktop
 Server
 Phone
 Embedded software

Family Distribution Notes

Debian

Debian Stable but slow release cycle

Ubuntu
 Managed by for-profit company Canonical
 Has long-term-support (LTS) versions

Mint Based on Ubuntu

MX Good driver support

Arch Arch Rolling release and highly customizable

Gentoo Gentoo Very customizable but hard for beginners to set up

Slackware Slackware Stable and been around forever

Red Hat
Red Hat Enterprise For-profit, with commercial support

Fedora Open-source version of Red Hat

SUSE openSUSE Good installer, weak performance

Details from https://distrowatch.com/

https://distrowatch.com/

 More C basics
 Math library
 Data representation

 Lab 1 is tomorrow
 Keep reading K&R Chapter 1

	COMP 2400
	Last time
	Questions?
	Project 1
	C Basics
	Control flow
	Conditionals
	Type safety
	Precision
	Java compilation model
	Compilation and execution for Java
	Java compilation details
	C compilation model
	C compilation details
	Basic compilation
	Makefiles
	Sample makefile
	File organization
	Low level language
	Other features
	Why study C?
	C's success
	Declaration syntax standards
	C standards
	History of Unix, Linux, and C
	What does UNIX even mean?
	What is Unix?
	Development
	Distribution
	Ports
	GNU
	Linux
	Distributions
	Popular distributions
	Upcoming
	Next time…
	Reminders

